Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca release in skeletal muscle

نویسندگان

  • Monika Sztretye
  • Jianxun Yi
  • Lourdes Figueroa
  • Jingsong Zhou
  • Leandro Royer
  • Paul Allen
  • Gustavo Brum
  • Eduardo Ríos
چکیده

The intracellular signal for contraction of skeletal muscle is the rapid increase in free cytosolic [Ca]. This increase requires coordinated opening of a substantial fraction of intracellular Ca release channels of the SR, which allows for a large flux of Ca from stores to cytosol. This flux must terminate rapidly as well to allow for the fast decay of [Ca] required for mechanical relaxation. The mechanisms that terminate Ca release flux may include both a reduction in the openness of the release channels and a reduction in the current per channel, as the SR depletes and the driving force for Ca flux is reduced. The relative contribution of such gating and depletion processes is not known quantitatively for skeletal muscle. In cardiac muscle, where more is known, an interaction has been demonstrated whereby depletion reduces flux both directly, by reducing the [Ca] gradient,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca2+ release in skeletal muscle

The mechanisms that terminate Ca(2+) release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca(2+) concentration inside the sarcoplasmic reticulum (SR), [Ca(2+)](SR), simultaneously with that in the cytosol, [Ca(2+)](c), during the...

متن کامل

Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms.

Sarcoplasmic reticulum (SR) Ca(2+) release in striated muscle is mediated by a multiprotein complex that includes the ryanodine receptor (RyR) Ca(2+) channel and the intra-SR Ca(2+) buffering protein calsequestrin (CSQ). Besides its buffering role, CSQ is thought to regulate RyR channel function. Here, CSQ-dependent luminal Ca(2+) regulation of skeletal (RyR1) and cardiac (RyR2) channels is exp...

متن کامل

A calcium-induced calcium release mechanism mediated by calsequestrin.

Calcium (Ca(2+))-induced Ca(2+) release (CICR) is widely accepted as the principal mechanism linking electrical excitation and mechanical contraction in cardiac cells. The CICR mechanism has been understood mainly based on binding of cytosolic Ca(2+) with ryanodine receptors (RyRs) and inducing Ca(2+) release from the sarcoplasmic reticulum (SR). However, recent experiments suggest that SR lume...

متن کامل

Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.

In striated muscle, the sarcoplasmic reticulum (SR) Ca2+ release/ryanodine receptor (RyR) channel provides the pathway through which stored Ca2+ is released into the myoplasm during excitation-contraction coupling. Various luminal Ca2+-binding proteins are responsible for maintaining the free [Ca2+] at 10(-3)-10(-4) M in the SR lumen; in skeletal-muscle SR, it is mainly calsequestrin. Here we s...

متن کامل

Mice Null for Calsequestrin 1 Exhibit Deficits in Functional Performance and Sarcoplasmic Reticulum Calcium Handling

In skeletal muscle, the release of calcium (Ca(2+)) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca(2+) release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca(2+) buffering as well as its potential for modulating RyR1, the L-type Ca(2+) channel (dihydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011